Other Drugs

- Antiemetics
- Antiepileptics
- Antidepressants
- Diuretics

KSS School of Anaesthesia Basic Science Course
South Coast Training Group
Dr S M Walton
Consultant Anaesthesia and Intensive Care
Eastbourne
Antiemetics
Describe the physiology of vomiting?

- Vomiting centre coordinates vomiting

- Considered as collection of effector neurones situated in medulla.

- Collection projects to vagus and phrenic nerves and spinal motor neurones supplying abdominal muscles
What inputs does the vomiting centre receive?

1. Chemoreceptor trigger zone (CTZ)
 - Lies in area postrema on floor of fourth ventricle
 - Functionally outside blood brain barrier

2. Vestibular apparatus
 - Inputs via vestibular and cerebellar nuclei excite centre

3. Peripheral pain pathways
4. Intestinal chemoreceptors and baroceptors
5. Cerebral cortex
Neurotransmitters/ receptors

- **Dopamine/ Dopamine receptors (D2)**
 - Dopamine produced by astrocytes synapsing with CTZ

- **Serotonin/ (5-HT) receptors - especially 5HT3**
 - Receptors found in gut, CTZ and area postrema

- **Acetycholine/ muscarinic receptors**
 - Vestibular pathways

- **Substance P/ Neurokinin 1 receptors**
 - Midbrain
Emetic drugs → Dopamine → 5-HT3 → CTZ → Vomiting Centre

Labyrinth → Ach → Vestibular Nuclei → Ach → Vomiting Centre

Peripheral Pain Pathway
Chemoreceptor Baroceptor Gut
Cerebral Cortex

Limbic System
Can you classify antiemetics?

- **Action on Receptor**
- **Site of action**

- **CTZ**
 - Antidopaminergics
 - Antihistamines
 - 5HT antagonists

- **Vomiting Centre**
 - Hyoscine
 - Antihistamines

- **Gut**
 - Drugs reduce sensitivity
 - Metoclopramide, antacids
 - 5HT3 antagonists
 - Increase gastric emptying
 - Metoclopramide, domperidone
A closer look at dopamine antagonists

• Can be divided into:
 – Phenothiazines (neuroleptics)
 – Butyrophenones (droperidol, haloperidol)
 – Domperidone
 – Benzamides - metoclopramid

Anti-D2 Effects

Mesolimbic pathway - antipsychotic
CTZ pathway - antiemetic

Nigrostriatal pathway
Extrapyramidal effects

Tuberoinfundibular pathway
• Reduce growth hormone secretion
• Increase release of prolactin - dopamine inhibits release
• Temp regulation - Neuroleptic malignant syndrome
The Phenothiazines

Propylamines

- Chlorpromazine

Piperidines

- Thioridazine

Piperazine

- Prochlorperazine

Dirty Drugs - Antagonism on:

- D2, Histaminergic (H1)
- Muscarinic, Serotinergic (5HT3)
- Noradrenergic (α1 and α2),

Effects:

- Sedation
- Extrapyramidal - dyskinesia
- Hyperprolactinaemia
- Neuroleptic malignant syndrome
- Vasodilatation and hypotension
- Anticholinergic
- Cholestatic jaundice
- Haemolysis, leucopenia
Prochlorperazine
“Stemetil”

- Of the phenothiazines:
 - Most effective in PONV
 - Most extrapyrimidal side effects
 - Children and young adults
 - Least sedation
 - Least anticholinergic
The Butyrophenones
Haloperidol/ Droperidol

- Dirty Drugs: D2, muscarinic etc…
- Therefore similar effects to phenothiazines
 - More sedation than phenothiazines

- Haloperidol limited antiemesis
- Droperidol - prolonged QT - torsades
 - Dose related
Metoclopramide

• Benzamide
• Antiemetic action:
 » via D2 in CTZ
 » High dose block 5HT3
• Prokinetic effect via:
 » Peripheral D2
 » Selective stimulation gastric muscarinic receptors
• Side effects:
 • CNS
 » extrapyramidal at higher doses
 » Dyskinesia and occulogyric crisis
 » Commoner in females, young and elderly, renal failure
 » Neuroleptic malignant syndrome
 • Increase lower oesophageal sphincter tone
 • Hypotension
 • Hyperprolactinaemia - used to stimulate lactation
Cyclizine

• Used as:
 • antiemetic
 • Control symptoms of Meniers disease

• Mechanism of action:
 • H1 antagonism at CTZ, Vomiting centre
 • Anticholinergic action

• Side effects:
 • Increase lower oesophageal sphincter tone
 • Anticholinergic - tachycardia

 – Prepared with lactic acid at pH of 3.2
 • May cause pain on injection
 • Precipitation
The 5HT3 Antagonists

Ondansetron

- **Use**
 - Ineffective in motion sickness

- **Mechanism of action**
 - Activation of 5HT3 receptors peripherally and centrally induces vomiting
 - Chemo and radiotherapy cause release of serotonin from enterochromaffin cells

- **Side effects:**
 - Headache, flushing, constipation and bradycardia following rapid injection

- No evidence of superiority over other classes
Hyoscine and The Anticholinergics

- Antagonize muscarinic receptors little activity on nicotinic
- Naturally occurring tertiary amines
 - Hyoscine and atropine
 - Cross blood brain barrier
- Quaternary amines
 - Glycopyrrolate
 - Does not cross blood brain barrier
<table>
<thead>
<tr>
<th>Effect</th>
<th>Hyoscine</th>
<th>Atropine</th>
<th>Glycopyrrolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiemetic</td>
<td>++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Sedation</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Anti-sialogue</td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Mydriasis</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Bronchodilation</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Heart rate</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>
Hyoscine

- Anti-spasmodic, antiemetic, anti-sialogue
- IM with opioid for sedative, activity
- Transdermally for motion sickness
- Central anticholinergic syndrome
 - Excitement, ataxia, hallucinations, behavioral abnormalities and drowsiness
Discuss any other types of antiemesis

- **Steroids**
 - Mechanism of action unknown
 - Traditionally used in chemotherapy induced vomiting

- **Benzodiazepines**
 - Mechanism unknown ? Action at VC
 - Lorazepam used in chemotherapy

- **Canabinoids**
 - Nabilone acts on VC

- **Aprepitant**

- **Accupuncture**
 - Several studies have demonstrated effectiveness
 - Point
 - P6
 - Between tendons flexor carpi radialis and palmaris longus
 - 4 cm proximal to distal wrist skin crease
Antiepileptics
How do anti-epileptic drug works?

• Epileptic events are the result of repetitive neuronal discharges

• Stop propagating and recycling currents by following mechanisms:
 1. Stabilizing Na channels - prevent further AP generation
 2. Increase inhibitory transmitter levels
 3. Modulating GABA receptor function
 4. *Inhibit excitatory neurotransmitters and their receptors*
 » NMDA likely target in future
Sodium Channel Stabilisers

- Phenytoin
- Carbemazepine
- Sodium Valproate
Phenytoin

• **Action:**
 – stabilize Na channels (Class 1B anti-arrhythmic)
 also
 – Reduce Ca\(^{2+}\) entry into neurones blocking excitatory transmitter release

• **Side effects:**
 – **Idiosyncratic:**
 • Acne, coarsening of facial features, hirsuitism, gum hyperplasia, megaloblastic anaemia, aplastic anaemia, skin rash, hyperplasia
 – **Dose related:**
 • Ataxia, nystagmus, paraesthesia, vertigo, slurred speech
 – **Intravenous**
 • Hypotension and arrhythmia (heart block)
 – **Teratogenicity**
 • Craniofacial/ limb/ growth and cardiac abnormalities
 • Mental retardation
Phenytoin cont

• Drug interactions:
 – Induces hepatic mixed function oxidases
 • Increase metabolism of drugs warfarin
 – Metabolism of it can be induced/ inhibited by drugs

• Kinetics
 – Saturable hepatic hydroxylation resulting in zero order kinetics
 – 9% of population slow hydroxylators
Carbemazepine

• Action:
 – Same as phenytoin

• Side effects:
 – CNS
 • headache, diplopia, ataxia, vomiting, drowsiness
 – Metabolic
 • antidiuretic - water retention - HYPONATRAEMIA
 – Teratogenicity
 • facial abnormalities, IUGR, mental retardation
 – Misc
 • hepatitis, rashes, agranulocytosis

• Drug Interactions:
 – Induces hepatic enzyme- vecuronium/ phenytoin
 – Metabolism inhibited - Erythromycin
Sodium Valproate

- **Action:**
 - Stabilizing Na channels
 - **Stimulates central GABA inhibitory pathways**

- **Side effects:**
 - Abdominal:
 - nausea and gastric irritation, pancreatitis, hepatotoxicity
 - Haematological:
 - Thrombocytopenia
 - Teratogenicity
 - Neural tube defects
 - Transient hair loss
Other Agents

- **Barbiturates:**
 - Enhance GABA function/ Sedation limit use
 - Phenobarbitone induces hepatic enzymes (interactions warfarin, OCP, other anticonvulsants)

- **BDZ**
 - Enhance GABA function

- **Vigabatrin**
 - Inhibits GABA transaminases (irreversibly)
 - Side effects: sedation, fatigue, headache, agitation, depression

- **Lamotrigine**
 - Stabilize Na channels
 - Stevens-Johnson syndrome in 0.1%

- **Gabapentin:**
 - Mode uncertain (may bind to Ca channels in brain)
 - Membrane stabilizer
 - Excreted unchanged/ no interactions
Antidepressants
How do antidepressants work?

- **Increase levels of Serotonin, Noradrenaline**

- **Tricyclics** *block uptake*1
 - Amitriptyline, nortriptyline, imipramine, dothiepin

- **SSRIs** *Serotonin Specific Reuptake Inhibitor*
 - Fluoxetine, paroxetine, citalopram, sertraline

- **SNRIs** *Serotonin Noradrenaline Reuptake Inhibitor*
 - Duloxetine, venlafaxine

- **NaSSAs** *Noradrenergic and Specific Serotonergic Antidepressants*
 - Mianserin, Mertazapine

- **NRIs** *Noradrenaline Reuptake Inhibitors*
- **MAOIs**
Tricyclics

• Based on tricyclic ring structure

• Uses:
 – Antidepressants, Nocturnal enuresis, Chronic pain

• Action:
 – Block uptake 1
 – Dirty drugs - block:
 • Muscarinic receptor, Histamine receptors, α adrenoceptors

• Side effects at treatment doses:
 – Sedation
 – Seizures in epileptic patients
 – Anticholinergic - dry mouth, constipation, urinary retention, blurred vision
 – Postural hypotension (esp in elderly)
How do you treat tricyclic overdose?

- Effects of overdose:
 - CVS
 - Tachycardia
 - Prolongation of QT
 - Widening of QRS
 - Ventricular arrhythmias
 - Hypotension/PEA
 - CNS
 - Seizures
 - Depression/coma
 - Mydriasis
 - Anticholinergic effects

- Treatment:
 - Activated charcoal
 - Bicarb
 - Alkalization treat arrhythmias/ prolonged QT
 - Increase protein binding
 - Correct acidosis if present
 - Anti-arrhythmics:
 - Lignocaine and phenytoin
 - Avoid inotropes
 - Benzodiazepines/phenytoin
 - Treat seizures
 - Fluids to treat hypotension
 - Forced diuresis
 - Hypertonic saline
The SSRIs

• Prozac etc
• Selective Serotonin Reuptake Inhibitors
• Inhibit reuptake of 5HT
• Similar antidepressant effect to tricyclics
• Lower side effect profile
 – Less sedative, less cardiotoxic in overdose, less anticholinergic effects

• Side effects:
 – Gastrointestinal side effects - nausea and constipation
 – Headache, insomnia, reduced libido, mania
 – Restlessness and agitation - suicide < 25
What is Serotonin Syndrome?

- Iatrogenic increase in serotonin centrally
- Can be potentially fatal
- Requires combination of drugs to reach potential fatal toxicity
 - different mechanisms of action in elevating CNS serotonin

- Symptoms:
 - Clinical features similar to neuroleptic malignant syndrome - But with lack of muscle rigidity

- Treatment:
 - Supportive/ Stop treatments
<table>
<thead>
<tr>
<th>Class</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>antidepressants</td>
<td>MAOIs, TCAs, SSRIs, mirtazapine, venlafaxine, St John's Wort</td>
</tr>
<tr>
<td>opioids</td>
<td>tramadol, pethidine, oxycodone, morphine...</td>
</tr>
<tr>
<td>CNS stimulants</td>
<td>phentermine, diethylpropion, amphetamines, sibutramine, methylenedioxymethamphetamine (MDMA or ecstasy), lysergic acid diethylamide (LSD), cocaine, heroin</td>
</tr>
<tr>
<td>5-HT1 agonists</td>
<td>triptans</td>
</tr>
<tr>
<td>illicit drugs</td>
<td>methylenedioxymethamphetamine (MDMA or ecstasy), lysergic acid diethylamide (LSD), cocaine, heroin</td>
</tr>
<tr>
<td>others</td>
<td>selegiline, tryptophan, buspirone, lithium, linezolid, dextromethorphan (DXM), 5-HTP, chlorpheniramine</td>
</tr>
</tbody>
</table>
MAOIs

- Monoamine oxidase in presynaptic membrane
- Responsible for deamination of amine neurotransmitters
- Types A and B
 - MAO-A
 - deaminates 5HT and catecholamines
 - MAO-B
 - deaminates tyramine and phenylethamine
MAOI

• 1st generation MAOI inhibit irreversibly and non-selectively
• 2nd generation MAOI inhibit reversibly and only MAO-A (RIMAs)
• 1st generation:
 – Phenelzine, isocarboxazid, tranylcypromine
• 2nd generation:
 – Moclobemide
• Rasagiline - antiparkinsonian
Side effects of MAOI

- **Hypertensive crisis**
 - Following tyramine rich foods
 - Cheese, pickled herring, chicken liver, bovril and chocolate
 - Indirectly acting sympathomimetics (ephedrine)

- **Interaction with Pethidine**
 - Cerebral irritability, hyperpyrexia and cardiovascular instability
 - Fentanyl also reported
How should you manage general anaesthesia in patients taking MAOI?

• Emergency surgery:
 – Avoid pethidine
 – Avoid indirectly acting sympathomimetic amines (ephedrine)
 – Use direct acting agents (cautiously as may precipitate exaggerated hypertension)
 • Metabolized by COMT therefore less exaggerated response

• Elective Surgery:
 – Withdraw for 14 - 21 days
 – May suffer relapse of depression
Diuretics
Can you classify the diuretics?

- Thiazides
- Loop diuretics
- Potassium sparing
- Aldosterone antagonists
- Osmotic
- Carbonic anhydrase inhibitors
According to site of action
The Thiazides

- Chemically related to sulphonamides
- Act on early segment of distal tube
- Inhibit Na and Cl reabsorption therefore increase water excretion
- Na in distal tube exchanged with K and H
- Reduce carbonic anhydrase activity resulting in increased bicarb excretion
- Bendroflumethiazide, chlorothiazide, metolazone
Thiazide - Effects

- Antihypertensive - ↓plasma volume and SVR
- Hypokalaemia, hypochloraeamic alkalosis, hyponatraemia, hypomagnesaemia
- Gout - thiazide and uric acid secreted by same mechanism
 - Inhibit uric acid excretion
- Metabolic - ↓insulin, ↓glycogenesis, ↑glycogenolysis.
 - Raise glucose in diabetics
- ↑cholesterol and triglycerides
- Blood dyscrasias
- NSAIDS antagonise
How do Loop Diuretics work?

- Carboxylic acid derivatives
- Furosemide and bumetanide
- Inhibit Na and Cl reabsorption in thick ascending limb + early part of distal tubule
- Impairs counter current multiplier system
- Reduces hypertonicity of medulla
- Loop of Henle large capacity so effects are marked (high ceiling diuretics)
Loop - Effects

- Arteriolar vasodilatation, reduce preload/afterload/pulmonary blood flow (before diuresis)
- Increase renal blood flow
- Hyponatraemia, hypokalaemia, hypomagnesaemia and hypochloraemic alkalosis
- Deafness rapid large bolus (with aminoglycosides and renal failure)
- ↑ lithium concentrations when co-administered
Potassium Sparing

- Amiloride

- Combined frequently in combination with loop diuretics to prevent hypokalaemia

- At distal convoluted tubule blocks Na/ K exchange creating diuresis and decreasing K excretion

- Use with ACE (reduce aldosterone secretion) can cause hyperkalaemia
Aldosterone Antagonists

- Spirinolactone oral, Potassium canremoate IV
- Use:
 - Heart failure, hypertension, ascites, nephrotic syndrome, primary hyperaldosteronism (Conn’s syndrome)
- Competitive aldosterone antagonist
- Aldosterone reabsorbs Na at distal tubule and excretes K
- Diuresis limited as only 2% of Na renal absorption under aldosterone control

- Effects
 - Hyperkalaemia, hyponatraemia
 - Gynaecomastia in men and menstrual irregularity due to anti-androgen effects
 - Contraindicated in Addison’s disease
Osmotic

- Mannitol is polyhydric alcohol
- Used to reduce ICP
- Used to preserve peri-operative renal function:
 - Jaundiced patients
 - Major vascular surgery
- Osmolarity > 320 mosm/kg contraindicated due to increased risk of renal failure
- Freely filtered at glomerulus and not reabsorbed
- Exerts osmotic effect
- Unable to pass intact BBB therefore draws extra-cellular brain water into plasma
- Head injury not intact
- Initially circulating volume increased may precipitate heart failure.
Carbonic Anhydrase Inhibitors

- Acetazolamide
- Weak diuretic
- Used primarily to treat mountain sickness.
- Inhibits aqueous humour production and used in glaucoma
- Inhibits carbonic anhydrase in proximal tubule
- H excretion inhibited and HCO₃ not absorbed
- Produces alkaline urine
- Na and water excretion slightly increased and increase K secretion.
- Results in metabolic acidosis
- Used to counteract respiratory alkalosis associated with mountain sickness