The Floppy Baby

Clare Betteridge
The floppy baby

- Identification
- Evaluation
- Investigation
- Diagnosis
- Examples
What is a floppy baby?

- Elbows and knees loosely extended.
- Head control is usually poor or absent.
- Hypotonic infants tend to slip between the hands.
- Hypotonic children hang their arms and legs limply by their sides when resting.
Extreme hypotonia
Head Lag

• Pedineurologic exam
No anti gravity movements
Neurological exam

Causes

- Does the child have an associated encephalopathy?
- Is there generalised weakness?
Weakness and encephalopathy

- HIE
- Focal infarction
- Meningitis
- Neonatal abstinence syndrome
- Hypoglycaemia
- Inborn error of metabolism
- Intracranial haemorrhage
Hypotonia without significant weakness (neurological)

- Chromosomal abnormalities
- Prader Willi syndrome
- T21
Hypotonia without significant weakness (non neurological)

- Prematurity
- Severe illness
- Ligamentous laxity
- Metabolic conditions
 - Amino acidurias
 - Peroxisomal disorders
 - Organic acidurias
- Severe growth failure
- Endocrine
 - Hypercalcaemia
 - Hypothyroidism
Hypotonia with muscle weakness

- Cervical cord injury secondary to birth trauma
- Anterior horn cell problems
 - Polio
 - SMA
- Neuromuscular junction
 - Transient myasthenia
 - Congenital myasthenic syndrome
- Peripheral nerve
 - Peripheral neuropathies
- Muscle
 - Congenital muscular dystrophy
 - Congenital myopathy
 - Congenital myotonic dystrophy
HIE

Shows high signal in the basal ganglia
Assessment

• Any significant family history
 – Affected parents or siblings
 – Consanguinity, stillbirths, childhood deaths
• Maternal disease – diabetes, epilepsy, myotonic dystrophy (may not be recognised)
• Pregnancy and delivery history
 – Drug or teratogen exposure
Assessment

- Decreased foetal movements
- Abnormal presentation
- Polyhydramnios/ oligohydramnios
- Apgar scores
- Resuscitation requirements
Assessment

• Cord gases
• Respiratory effort
• Ability to feed
• Level of alertness
• Level of spontaneous activity
• Character of cry
Investigations

• Full examination

• Initial bloods
 – Chromosomes
 – FBC
 – CRP
 – LFT
 – Lactate
 – U and E
 – Blood gas
 – Ammonia
Additional clues

- Hepatosplenomegaly
 - storage disorders, congenital infections
- Zellweger’s syndrome
 - Renal cysts, high forehead, wide fontanelles –
- Neonatal adrenoleukodystrophy
 - Hepatomegaly, retinitis pigmentosa –
- Oculocerebrorenal (Lowe) syndrome
 - Congenital cataracts, glaucoma
- Abnormal odour – metabolic disorders
- Prader Willi
 - Hypopigmentation, undescended testes –
Prader Willi

- High prominent forehead
- Narrow bi-frontal diameter
- Telecanthus,
- Downslanted palpebral fissures
- Downturned corners of the mouth
- Micrognathia
- Dysplastic ears
Diagnosis

- **Central causes**
- **Neuroimaging**
 - Ultrasound scan in the first instance.
 - MRI may be indicated if a structural abnormality of brain development is suspected and to exclude other abnormalities (for example, evidence of HIE)
 - **EEG**
 - prognostic information as to brain function, useful clinically if seizures suspected
 - Genetics review and karyotype if any dysmorphic features present
 - TORCH screen
 - DNA methylation studies or FISH for Prader-Willi syndrome
 - Metabolic investigations
Diagnosis

• Peripheral causes
 – hypotonia and weak
 – Decreased reflexes

• Neurology review
• Molecular genetics –
 – CTG repeats (myotonic dystrophy)
 – deletions in SMN gene
• Creatinine kinase
• Nerve conduction studies and muscle biopsy
Muscular disorders

• **Congenital muscular dystrophy**
 – Group of disorders characterised by
 • Muscular weakness
 • Hypotonia
 • Joint contractures from birth
 • Spinal deformities
 • Respiratory compromise
Congenital muscular dystrophy

- Laminin alpha-2 (merosin) deficiency (MDC1A)
- Collagen VI-deficient CMD
- Dystroglycanopathies (caused by mutations in POMT1, POMT2, FKTN, FKRP, LARGE, POMGNT1, and ISPD)
- SEPN1-related CMD, previously known as rigid spine syndrome
- LMNA-related CMD
- Almost all are AR except Collagen VI deficient
Muscular dystrophies

• Merosin negative congenital muscular dystrophy
 – Merosin negative-absence of merosin on biopsy
 – Associated with learning difficulties
 – Usually cannot walk independently
 – AR
• Merosin positive less severe
• Fukuyama congenital muscular dystrophy
 – Autosomal recessive 9q31-q33
 – Associated with brain malformations
Slightly older children

- Duchenne’s muscular dystrophy
 - Caused by the absence of dystrophin, a protein involved in maintaining the integrity of muscle
 - Can be picked up by abnormal transaminases in intercurrent illness
 - Onset between 3 and 5
 - Early delay motor milestones
 - Faltering growth
 - Difficulty climbing stairs
 - Waddling gait
 - Diagnose with high CK (>5000), muscle biopsy and mutations in dystrophin gene
Congenital myopathies

- Group of disorders
- Hypotonia and weakness from birth
- Differentiated by clinical and histological features
• Nemaline myopathy
 – Common
 – Can get scoliosis
 – Doesn’t tend to worsen.
• Myotubular myopathy
 – Rare, only males
 – Can notice antenatally with reduced foetal movements
 – Significant respiratory and feeding difficulties
 – Most don’t survive
 – Also associated with osteopenia
• Centronuclear myopathy
 – Rare
 – Weakness of the arms and legs, droopy eyelids, and problems with eye movements
 – Weakness often gets worse with time
• Central core disease
 – Mild floppiness
 – Delayed milestones
 – Moderate limb weakness
 – Can have life threatening reactions to anaesthetics
 – Salbutamol significantly reduces weakness.
Congenital myotonic dystrophy

- Mother has to be affected by myotonic dystrophy
- Often unrecognised in mothers
- Polyhydramnios
- Unexpectedly flat at birth
- Facial weakness and hypotonia
- Often requires respiratory support
- Joint contractures especially talipes
- Tented upper lip
- Gene has been isolated
Spinal muscular atrophy

<table>
<thead>
<tr>
<th>Severity</th>
<th>Synonyms</th>
<th>Functional abilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>Type I SMA</td>
<td>Unable to sit or walk</td>
</tr>
<tr>
<td>1:20000</td>
<td>Werdning-Hoffmann disease</td>
<td>Death in 18 months</td>
</tr>
<tr>
<td>Prenatal onset in 30%</td>
<td>Diagnose with SMA gene, EMG and biopsy</td>
<td></td>
</tr>
<tr>
<td>Absent reflexes and tongue fasciculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>Type II SMA</td>
<td>Able to sit but not walk</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>Early scoliosis</td>
<td></td>
</tr>
<tr>
<td>Onset after 3 months</td>
<td>Prognosis depends on respiratory muscle involvement</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>Type III Kugelberg-Welander disease</td>
<td>Able to walk but proximal weakness</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>Tendon jerks may not be absent</td>
<td></td>
</tr>
</tbody>
</table>
Spinal muscular atrophy

- Diagnosed using the DNA mutation in the SMN1
- Motor neurons are vulnerable to a shortage of this protein
Case 1

- FTND
- Antenatal USS NAD
- Admitted on D5 with poor feeding
- Noted to be hypotonic, centrally and peripherally
- Treated with IV antibiotics for presumed sepsis
- Tone gradually improved but remained low
- MRI brain normal
Case 1

- Chromosomes and metabolic investigations sent
- Initial SALT review showed reasonable suck but difficult coordinating a swallow
- Myotonic dystrophy and Prader Willi genetics negative
- Re-presented at 7 weeks with weight decreased to 9th centile
Case 1

• Very hypotonic
• No anti-gravity movements
• SMN1 gene negative-SMA not excluded but less likely
• Referred to SGH
• Muscle biopsy performed
• Showed merosin positive congenital muscular dystrophy
Case 1

- Required portage, physiotherapy and SALT assessment
- Needed BiPAP at night from 6 months of age
- RIP at 1 year of respiratory failure
Conclusion

• Multiple pathologies
• Identification
• Assessment
• Investigation
• Ask for help